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Abstract

Maltol (MAL), ethyl maltol (EMA), vanillin (VAN) and ethyl vanillin (EVA) are food additives, and they have well defined UV

spectra. However, these overlapped seriously, and it is difficult to determine them individually from their mixtures without a pre-

separation. In this paper, chemometric approaches were applied to resolve the overlapping spectra and to determine these com-

pounds simultaneously. The analysis of these four compounds was facilitated by the use of an orthogonal array data set consisting

of absorption spectra in the 200–350 nm ranges obtained from a calibration set of mixtures containing these compounds. With this

dataset, seven different chemometric models were built, such as classical least squares (CLS), principal components regression

(PCR), partial least squares (PLS), and artificial neural networks (ANN). These chemometric models were then tested by the use

of a validation dataset constructed from synthetic solutions of these four compounds. The analytical performance of these chemo-

metric methods was characterized by relative prediction errors (RPE) and recoveries. The proposed methods were successfully

applied to the analysis of commercial food samples. It was found that the radial basis function artificial neural networks (RBF-

ANN) gave better results than other chemometric methods. PLS, PCR, DPLS, and DPCR also give satisfactory results, while

CLS and DCLS perform poorer. It was also found that there was no advantage to pre-treat spectra by taking derivatives. The four

compounds, when taken individually, behaved linearly in the 1.0–20.0 mgl�1 concentration range, and the limits of detection (LOD)

for MAL, EMA, VAN and EVA were 0.39, 0.56, 0.49 and 0.38 mgl�1, respectively.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Maltol (MAL), ethyl maltol (EMA), vanillin (VAN)
and ethyl vanillin (EVA) are important food additives

as flavor enhancers. Their molecular structures are as

shown in Scheme 1. These compounds are widely used

to contribute to the fragrance of commercial foods such
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as candies, cookies, chocolate and beverages (Heath,

1978; Hui, 1992). Although these compounds can en-

hance the scent of foods, they are synthetic perfumes
and food additives. If large amounts of these flavor

enhancers are ingested, they cause headaches, nausea

and vomiting, and could affect liver and kidney func-

tions (Han, 2002). Consequently, it is important to

determine their contents in foods.

The analytical methods for determination of MAL,

EMA, VAN and EVA, include gas chromatography–

mass spectrometry methods (GC–MS) (Adahchour,
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Scheme 1.
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Vreuls, van der Heijden, & Brinkman, 1999; Clark &

Bunch, 1997), high performance liquid chromatography

methods (HPLC) (Portela, Baluguera, Goicolea, & Bar-

rio, 1996), UV–Vis spectrometry methods (UV) (Li,
Jiang, Mao, & Shen, 1998; Cheng, Zhang, & Lin,

2000), and electrochemical methods (EC) (Agui, Lo-

pez-Guzman, Gonzalez-Cortes, Yanez-Sedeno, & Pin-

garron, 1999; Luque, Luque-Perez, Ryos, & Valcarcel,

2000), have been reported.

The chemometric methods are an effective way to

analyze simultaneously several analytes (Galeano Diaz,

Guiberteau, Ortiz Burguillos, & Salinas, 1997). The abil-
ities of different chemometric methods to resolve mix-

tures of different compounds with overlapped spectra

have been widely utilized. The main advantage of multi-

component analysis by chemometric methods (multiva-

riate calibration and artificial neural networks in this

work) is the rapid determination of the components in

mixtures avoiding a prior separation, which is generally

necessary owing to the overlapped signals. Recently, the
chemometric methods such as classical least squares

(CLS), principal components regression (PCR), partial

least squares (PLS), artificial neural networks (ANN)

have found increasing applications for multicomponent

determination (Ni & Gong, 1997; Duran-Meras, Mu-

noz-de-la Pena, Espinosa-Mansilla, & Salinas, 1993;

Adsu, Bozdogan, & Kunt, 1998; Ventura, Silva, & Per-

ez-Bendito, 1995). These methods are effective in spec-
trophotometric analysis, because they can improve the

performance and application of the analytical method

with the use of simultaneous analysis of several spectra.

Generally, when applying chemometrics methods for

prediction, a set of calibration samples with known com-

positions is first prepared and the absorption spectral

measurements are carried out; then the mathematical

models are established by processing the measured spec-
tral data. Subsequently, the models are used for the pre-

diction of unknown samples under the same

experimental conditions.

In this work, the simultaneous determination of the

mixtures of MAL, EMA, VAN and EVA by UV–Vis

spectrophotometry was carried out with the use of

chemometrics methods (CLS, PCR, PLS and ANN).

Recently, it has been shown that the transformation of
the raw spectra to their derivatives is a successful data

pre-treatment method, and its usefulness for
spectrophotometric analysis has been evaluated in sev-

eral studies (Kompany-Zareh, Massoumi, & Pezeshk-

Zadeh, 1999; Ni & Jin, 1999). This pre-treatment of

spectral data was also investigated in this work. All

the mentioned chemometrics methods were applied for

the analysis of synthetic samples and several commercial
food samples, and the results obtained are compared.
2. Materials and methods

2.1. Chemicals

All solutions were prepared with analytical-grade rea-
gents (Shanghai Reagents Company), and doubly dis-

tilled water was used throughout. Stock solutions of

MAL, EMA, VAN and EVA (1.00 g l�1) were prepared

by dissolving each of the crystalline compounds in 95%

ethanol. Working solutions of 250 mgl�1 were prepared

by dilution with distilled water before use. Britton–Rob-

inson buffer solution (pH 2.87) was prepared from phos-

phoric acid, acetic acid, boric acid and sodium
hydroxide (Zhu, Wang, & Lu, 1999).

2.2. Apparatus

Spectrophotometric measurements were made on a

UV-2501PC spectrophotometer (Shimadzu), equipped

with a thermostat (TB-85, Shimadzu). The pH of the

solutions was measured with a pH meter (SA-720,
Orion).

The data were processed on a Pentium IV computer

with programs written in MATLAB 6.0 (Mathworks).

2.3. Analytical procedure

Suitable amount of working solutions of MAL,

EMA, VAN and EVA, or their mixtures, were trans-
ferred to 25 ml volumetric flasks followed by the addi-

tion of 5.0 ml of the Britton–Robinson buffer solution

(pH 2.87), diluted to the mark with the doubly distilled

water, and mixed well. The absorbance spectrum of each

solution was measured with respect to a reagent blank

between 200 and 400 nm at a 1 nm interval, and all these

data were recorded and used for calculations.

2.4. Linear calibration models for maltol, ethyl maltol,

vanillin and ethyl vanillin

A set of eight samples with different analyte concen-

trations was prepared for each flavor enhancer, and

the absorbance measurements were carried out as de-

scribed in Section 2.3. Each peak of these compounds

has a good linear relationship with the concentrations.
Parameters of the models of each compound are sum-

marised in Table 1. It can be seen that good correlation



Table 1

Parameters of linear calibration models for maltol, ethyl maltol, vanillin and ethyl vanillin separately

Parameters Maltol (273 nm) Ethyl maltol (274 nm) Vanillin (278 nm) Ethyl vanillin (279 nm)

Sample number (n) 8 8 8 8

Linear range (mgl�1) 1.0–20.0 1.0–20.0 1.0–20.0 1.0–20.0

Slope (lmg�1) 0.0720 0.0664 0.0682 0.0642

Intercept (·10�3) 7.8 �2.4 5.5 8.8

sb (·10�4)a 4.5 6.2 5.9 4.4

sa (·10�3)a 5.4 7.3 6.9 5.2

Correlation coefficient 0.999 0.999 0.999 0.999

Detection limit (mgl�1)b 0.39 0.56 0.48 0.38

a sa is the SD of the intercept, and sb is the SD of the slope.
b The detection limits for all compounds were calculated according to Millers� method (Miller and Miller, 2000).

Table 3

Composition of the validation samples

Samples Concentration (mgl�1)

Maltol Ethyl maltol Vanillin Ethyl vanillin

1 1.20 1.20 1.20 1.20

2 1.20 3.50 3.00 3.00

3 1.20 4.50 5.00 5.00

4 1.20 6.50 6.50 6.50

5 2.50 1.20 3.00 5.00

6 2.50 3.50 1.20 6.50

7 2.50 4.50 6.50 1.20

8 2.50 6.50 5.00 3.00

9 4.50 1.20 5.00 6.50

10 4.50 3.50 6.50 5.00

11 4.50 4.50 1.20 3.00

12 4.50 6.50 3.00 1.20

13 6.50 1.20 6.50 3.00

14 6.50 3.50 5.00 1.20

15 6.50 4.50 3.00 6.50

16 6.50 6.50 1.20 5.00
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coefficients are observed at main peak wavelengths for

each compounds.

2.5. Prediction of four flavor enhancers in synthetic

mixtures

The orthogonal array design method was used to

optimize the calibration set in this work. Application
of a four-level orthogonal array design, denoted by

OA16(4
5) (Lan, Wong, Ni, & Sin, 1994), showed that

16 samples were required with the compositions as

shown in Table 2. Another 16 synthetic mixtures con-

taining these four compounds, mixed in randomly se-

lected ratios (Table 3), were prepared for validation.

The concentrations of the enhancers in the latter set

were estimated by processing the absorbance data
with the aid of the calibration models, including

CLS, PCR, PLS, DCLS, DPCR, DPLS (D=deriva-

tive transformation as spectral pre-treatment), and

RBF-ANN. To investigate the uncertainty of predic-

tion for each calibration method, the relative predic-

tion error (RPE) was calculated (Otto &
Table 2

Composition of the calibration samples

Samples Concentration (mgl�1)

Maltol Ethyl maltol Vanillin Ethyl vanillin

1 1.00 1.00 1.00 1.00

2 1.00 3.00 2.00 2.00

3 1.00 5.00 4.00 4.00

4 1.00 7.00 7.00 7.00

5 3.00 1.00 2.00 4.00

6 3.00 3.00 1.00 7.00

7 3.00 5.00 7.00 1.00

8 3.00 7.00 4.00 2.00

9 5.00 1.00 4.00 7.00

10 5.00 3.00 7.00 4.00

11 5.00 5.00 1.00 2.00

12 5.00 7.00 2.00 1.00

13 7.00 1.00 7.00 2.00

14 7.00 3.00 4.00 1.00

15 7.00 5.00 2.00 7.00

16 7.00 7.00 1.00 4.00
Wegscheider, 1985). The RPE for a single component
in mixtures can be formulated as

RPES ¼

Pn
i¼1

ðcpred;i;j � creal;i;jÞ2

Pn
i¼1

ðcreal;i;jÞ2

2
664

3
775

0:5

; ð1Þ

and the RPE for all components can be formulated as

RPET ¼

Pn
i¼1

Pm
j¼1

ðcpred;i;j � creal;i;jÞ2

Pn
i¼1

Pm
j¼1

ðcreal;i;jÞ2

2
6664

3
7775

0:5

; ð2Þ

where creal,i,j indicates the concentration of jth compo-

nent in ith mixture and cpred,i,j is its estimate found by

chemometric methods.

2.6. Interferences

Various possible interfering substances, such as su-

crose, glucose, citric acid, synthetic colorants and metal
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ions, all of which are commonly present with the flavor

enhancers in commercial food samples, were tested un-

der the same experimental conditions. The effect of

interference with different concentrations on the absorb-

ance of a solution containing 4 mgl�1 of each analyte

was studied. It was generally considered to interfere with
the analysis when its presence produced a variation in

the absorbance of the sample larger than 5%. It was

found that sucrose, glucose and citric acid did not inter-

fere at a 500:1 interferent-to-analyte concentration ratio.

Synthetic colorants, such as sunset yellow, tartrazine,

amaranth and ponceau 4R, produced interferences at

nearly 10 times concentration level to flavor enhancers.

Na+, K+, Ca2+, Zn2+, Mn2+, Pb2+, Cd2+ and Cu2+ did
not interfere or produced only small contributions even

at a 100:1 inerferent-to-analyte ratio. It was found that

Fe3+ produced serious interference in the determination.

However, the analytes were extracted with anhydrous

ethanol in real sample analysis, and Fe3+ is not ex-

tracted, so no interference occurs.

2.7. Application to food samples

Several commercial food samples were purchased

from the local market in Nanchang city. The food sam-

ple was ground to a fine powder with a mortar and pes-

tle. 30.0 g of this powder and 50 ml of anhydrous

ethanol were placed into a 100 ml Erlenmeyer flask (with

a screw cap), and shaken by a laboratory shaker for 2 h,

this mixture was then transferred to a 10 ml centrifuge
tube, and centrifuged at 3000 rpm for 5 min. The clear

part of the solution in the tube was used for analysis.

Suitable amount of this sample was transferred into a

25 ml flask, added 5.0 ml of 95% ethanol, then the solu-

tion was analyzed by the procedure as described in

Section 2.3.
3. Results and discussion

3.1. Chemometrics

Multivariate calibration approaches are important

applications in spectrophotometric multicomponent

analysis. Here A and C represent the matrices of absorb-

ance and concentration of a set of standard solutions,
respectively, and assuming that m standard solution

mixtures containing n kinds of component are prepared

according to the orthogonal array design (Lan et al.,

1994), and then their absorbances are measured at l

wavelengths, the following equation can be obtained:

Am�l ¼ Cm�nKn�l; ð3Þ
where K is the coefficient matrix. According to this equa-

tion, it is possible to determine the components individ-

ually with the use of suitable chemometric methods.
CLS (Schmidt Peter & Glombitza Bernhard, 1995) is

a very common multivariate calibration method and has

been used for quantitative spectral analysis. This meth-

od has generally presumed that there is a linear relation-

ship between response signals and component

concentrations. In addition, this method has a calibra-
tion step where the relationship between the spectra

and component concentrations is estimated from a set

of standard samples. This step is followed by prediction

in which the results of the calibration are used to esti-

mate the component concentrations from the spectrum

of �unknown� samples. A major disadvantage of CLS

is that all interfering chemical components in the spec-

tral region of interest need to be known and be included
in the calibration models.

PCR (Jolliffe, 1986) and PLS (Markus, 1996) are fac-

tor analysis based multivariate statistical tools, which

have many of the full-spectrum advantages of the CLS

method, and have been successfully applied to the anal-

ysis of multicomponent mixtures. Like the CLS method,

PCR and PLS need a calibration step where the models

for the spectra and the component concentrations are
deduced from a set of standards, followed by a predic-

tion step in which the concentrations of the unknown

are estimated from the sample spectrum. Both of these

methods involve spectral decomposition. The PCR

decomposition is based entirely on spectral variations

without regard for the component concentrations, and

in PLS, the spectral decomposition is weighted to the

concentration.
Artificial neural networks (ANN) are widely used to

solve some analytical problems, the most popular is

the multilayer feed-forward net with the back-propaga-

tion (BP-ANN) learning algorithm (Zupan & Gasteiger,

1991). Recently, a potential alternative approach, ANN-

radial basis function (RBF), has been developed, which

offers some advantages of robustness and sensitivity to

noisy data as comparing with ANN-BP. The basic the-
ory for RBF-ANN and application to chemical prob-

lems are found in the literature (Walczak & Massart,

1996; Pulido, Ruisanchez, & Ruis, 1999).

The structure of RBF is comprised of three node lay-

ers of a pass-through input layer, a hidden layer and an

output layer. Each neuron of the hidden layer represents

a kernel or basis function, its dimensionality being the

same as the input data. For example, if the dimensional-
ity of the input data equals 20 (i.e., number of input

nodes, i=20), the RBF is 20-dimensional. RBF net-

works generally use a Gaussian function to account

for the non-linearity of the hidden layer processing ele-

ments and the Gaussian function responds only to a

small region of the input space where the Gaussian is

centered. The key to a successful implementation of

these networks is to find suitable centers for such a
Gaussian function, which is characterized by two

parameters, i.e., center (cj), and peak width (rj). The
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output from the jth Gaussian neuron for an input object

xi can be calculated by the following equation:

outj ¼ Ujðkxi � cjkÞ ¼ exp
� xi � cj
�� ��2
ðrjÞ2

 !
; ð4Þ

where ixi�cji is the Euclidean distance between xi, and

cj, and rj determines the portion of the input space

where the jth RBF will have a non-significant zero re-

sponse. This RBF hidden layer is fully connected to
the output layer by the size of the weight coefficients,

wkj, and the response of each output node is calculated

by a linear function of its input (which includes the bias

wkj), that is, the output of the hidden layer (outk). The

relationship between value outk and the input variables

xi can be represented by

outk ¼ wk0 þ
X
j

wkjUjðkxi � cjkÞ: ð5Þ

The weights wkj are adjusted to minimize the mean
square error of the net output. There are two sets of

parameters (the centers and the widths) in the hidden

layer and a set of weights in output layer are adjusted,

and the adjustment for output layer is simple, so the

RBF neural network has a guaranteed learning proce-

dure for convergence.

3.2. Absorption spectra

The absorption spectra over the 200–350 nm of the

four individual flavor enhancer solutions are shown in

Fig. 1. It can be seen that the spectra of these com-

pounds overlapped seriously, and quantitative estima-

tions cannot be carried out successfully by

conventional calibration methods. Both MAL and

EMA have two peaks, 213 and 273 nm for MAL and
213 and 274 nm for EMA, while both VAN and EVA

have three peaks, 229, 278 and 308 nm for VAN and

230, 279 and 309 nm for EVA. The absorbance data

from 200 to 350 nm was used for calibration in this

work, because most quantitative information can be ex-

tracted from this region.
Fig. 1. Absorption spectra of maltol (MAL), ethyl maltol (EMA),

vanillin (VAN), ethyl vanillin (EVA) and the reagent blank. Concen-

tration: 4.0 mgl�1.
3.3. Effect of pH on the absorbance of the compounds

The effect of pH on the absorbance of these com-

pounds was investigated in this work. A set of Brit-

ton–Robinson buffer solutions with different pH in the

range of 1.81–11.2 were prepared, and the spectra of
each compound in these buffers were measured from

200 to 400 nm (Fig. 2). It can be seen that constant

absorbances and well-defined spectra of each flavor en-

hancer can be observed in the pH range of 1.81–6.00.

In this work, pH 2.87 is chosen as the optimum pH

for experiments. The absorbances of VAN and EVA

started to increase with increasing pH for pH>6 until fi-

nally the peak maxima of these two compounds shifted
to 347 nm. Similarly, as the absorbances of MAL and

EMA increased with increasing pH for pH>8, the peak

wavelengths of these two compounds shifted to 221 and

319 nm, respectively. The reason for all these variations

probably involves the hydroxyl groups in the molecular

structures of the analytes. Their degree of protonation

would change with the change in pH. When pH>6,

VAN and EVA exist as phenyl salt i.e., the OH is
deprotonated to some extent, while in the pH range of

2.0–6.0, the OH is protonated giving rise to the neutral

form of the molecule. Similarly, when pH>8, MAL

and EMA exist as the phenyl salts, but are protonated

in the pH range of 2.0–8.0.

3.4. Comparison of different chemometrics methods

Sixteen synthetic mixtures containing the four flavor

enhancers were prepared for validation (Table 3), and

the RPE (%) and the recovery (%) found by each chem-

ometrics method were listed in Table 4. It can be seen

that RBF-ANN gives the best results on the basis of

%RPE and %recoveries, presumably because this

ANN method is particularly well suited for modeling

non-linear and complex systems. Both CLS and DCLS
perform poorer, they give higher RPET, and the recov-

eries are also not satisfactory. Because these two meth-

ods generally cannot account for any non-linearity

between components, they do not model well complex

analytical systems. PLS, PCR, DPLS, and DPCR give

better results, their RPET are less than 10% and give

acceptable recoveries. When the derivative spectral ma-

trix was analysed (DCLS, DPCR and DPLS), it was
found that the prediction errors (RPET) did not im-

prove. From Table 4 it can also be seen that most meth-

ods, except for CLS and DCLS, give acceptable RPES

(2.7–10%) and recoveries (88–112%) for these four com-

pounds. It can also be seen that both PLS and PCR gave

similar results, for they are methods based on factor

analysis and are suitable for the analysis of many com-

plex systems. It is important to select suitable number
of factors for the PCR and PLS models, and Figs. 3

and 4 show the relationship between the RPET and the



Fig. 2. Absorbance of maltol (MAL), ethyl maltol (EMA), vanillin (VAN) and ethyl vanillin (EVA) with pH.

Table 4

Prediction results for each compound from the validation samples by different chemometrics methods

Methods RPES (%) and recovery (%) for compounds RPET (%)

Maltol Ethyl maltol Vanillin Ethyl vanillin

CLS 25.0 (78)a 26.6 (136) 3.4 (100) 4.8 (98) 18.3

DCLSb 26.9 (86) 30.7 (138) 6.7 (105) 6.8 (98) 20.7

PCRc 8.8 (102) 9.9 (108) 5.1 (103) 6.1 (99) 7.7

DPCR 8.9 (112) 9.4 (95) 8.4 (111) 9.8 (89) 9.1

PLS 9.4 (99) 10.4 (110) 4.3 (99) 5.3 (97) 7.7

DPLS 8.9 (104) 9.3 (95) 8.9 (110) 10.1 (88) 9.4

RBF-ANNd 5.1 (104) 5.3 (99) 2.7 (101) 4.3 (97) 4.4

a The values in parentheses correspond to the mean recoveries (%). Recovery ð%Þ ¼ 100�
Pn

i¼1ðciðpredÞ=ciðrealÞÞ=n, where n is the number of

samples.
b ‘‘D’’ indicates the first-derivative pre-treatment approach.
c The number of factors selected were: 8 for PCR and DPCR, 9 for PLS, and 7 for DPLS.
d The parameters of radial neurons, sum-squared error goal and spread of radial basis function for were 14, 0.02 and 80, respectively.
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number of factors used for calibration method. Thus,

with reference to these graphs, the number of factors se-

lected for PCR, DPCR, PLS, and DPLS were 8, 8, 9 and

7, respectively.

The GC–MS technique (Adahchour et al., 1999) for

the determination of VAN and MAL in butter was

based on solid-phase extraction, and limits of detection

of 2–10 pg were reported. The LC technique (Portela
et al., 1996) coupled with the oxidative amperometric

detection and a glassy carbon electrode was applied

for the determination of MAL in cake samples. The lin-

ear response was observed to be from 3 to 40 ng. The
sensitivity of these two methods was high, but complex

previous separation was generally needed, which was

time-consuming. Square-wave voltammetry (SWV) has

been used to determine the VAN in dehydrated pud-

ding powder dissolved in ethyl acetate (Agui et al.,

1999). The linear range was 1.5–106 mgl�1 and the lim-

it of detection was 0.6 mgl�1. UV–Vis spectrometric

procedures are commonly applied in many cases due
to their good reliability, simplicity and reproducibility.

The procedure for spectrophotometric determination

of EMA with the reagent ferric chloride was reported

with the linear range of 1.5–15 mgl�1 (Cheng et al.,



Fig. 3. Relationship of RPET and the number of factors for PCR and

DPCR modelling.

Fig. 4. Relationship of RPET and the number of factors for PLS and

DPLS modelling.
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2000). It can be seen that, generally, the linear ranges

and limit of detection for voltammetry and UV–Vis

spectrophotometry are similar to the proposed method
Table 5

Results of analysis for flavor enhancers in real food samples

Samplesa Found in samples (mgg�1) Added (mgg�1)

MAL EMA VAN EVA MAL EMA VAN EVA

Method of PLSb

1 NDc ND 0.37 ND 0.28 0.28 0.28 0.28

2 ND ND 0.29 ND 0.28 0.28 0.28 0.28

3 ND ND 0.45 ND 0.28 0.28 0.28 0.28

4 ND ND 0.33 ND 0.14 0.14 0.37 0.30

5 ND 0.09 0.38 ND 0.14 0.14 0.37 0.30

6 ND 0.06 0.31 ND 0.14 0.14 0.37 0.30

Method of RBF-ANNd

1 ND ND 0.34 ND 0.28 0.28 0.28 0.28

2 ND ND 0.26 ND 0.28 0.28 0.28 0.28

3 ND ND 0.44 ND 0.28 0.28 0.28 0.28

4 ND ND 0.32 ND 0.14 0.14 0.30 0.37

5 ND 0.08 0.41 ND 0.14 0.14 0.37 0.37

6 ND 0.07 0.29 ND 0.14 0.14 0.37 0.37

a Samples: (1) Conserved plum. Guangdong Chaoan Food Production Co

city. (3). Chocolate. Shanghai Golden Monkey Production Co. Ltd. (4) Caram

fruit. Guangdong Funhuang Food Production Co. Ltd. (6) Milk candy. Sha
b Nine factors were modelled.
c Not detected.
d Parameters used were as in Table 4.
(Table 1). Further, only one or two compounds can be

determined simultaneously by the use of the conven-

tional data interpretation methods because the spectra

measured are seriously overlapped. In this work, chem-

ometrics approaches were applied to resolve the over-

lapping spectra, and determine MAL, EMA, VAN
and EVA simultaneously. The linear ranges of the four

compounds were 1.0–20.0 mgl�1 and the limit of detec-

tions for these four flavor enhancers are in the range of

0.38–0.56 mgl�1, which is an improvement of at least a

factor of two on the number of analytes estimated

together. This indicates significant analytical cost

savings.

3.5. Results for real samples

From the discussion in Section 3.4, it was shown that

PLS and RBF-ANN are the two well performing meth-

ods for prediction. Therefore, these methods were ap-

plied for analysis of real food samples and the results

are summarized in Table 5. As can be seen from the re-

sults, VAN was the single, frequently used flavor enhan-
cer in food products in China. EMA and VAN were

sometimes mixed in foods, and the amounts of VAN

are much higher than that of EMA in Preserved Fruit

and Milk Candy samples. Also, Table 5 lists the recov-

eries obtained from the standard additions to each sam-

ple. As can been seen, overall, PLS and RBF-ANN give

similar mean %recoveries and are practically indistin-

guishable in performance. In general, most are in the
range from 82% to 117%, except for one poor of result

of 79%.
Found for addition (mgg�1) Recovery (%)

MAL EMA VAN EVA MAL EMA VAN EVA

0.29 0.30 0.66 0.26 104 109 104 95

0.31 0.28 0.54 0.24 111 103 92 85

0.26 0.23 0.77 0.30 93 82 115 108

0.10 0.16 0.74 0.38 79 114 112 103

0.12 0.24 0.75 0.41 89 106 98 111

0.15 0.22 0.63 0.35 109 113 87 94

0.27 0.29 0.68 0.27 98 104 113 96

0.30 0.31 0.54 0.30 108 113 100 106

0.32 0.27 0.75 0.26 115 97 112 92

0.13 0.15 0.73 0.43 95 109 109 117

0.12 0.23 0.78 0.39 86 107 100 105

0.15 0.23 0.68 0.41 114 111 105 111

. Ltd. (2) Egg roll. purchased from Rainbow supermarket, Nanchang

el candy. Shanghai Perfetti Candy Production Co. Ltd. (5). Preserved

nghai Golden Monkey Food Production Co. Ltd.
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4. Conclusions

In this paper, a rapid and simple spectrophotometric

procedure was developed for the simultaneous determi-

nation of four flavor enhancers, MAL, EMA, VAN and

EVA, with the aid of chemometrics approaches. The
prediction of the concentrations of the compounds was

facilitated by the use of an orthogonal design to build

a calibration dataset, which was then applied for the

building of calibration models with seven different

chemometrics methods for the testing of a validation

data set constructed from synthetic solutions of the four

compounds. The analytical performance of these che-

mometric methods was characterized by %RPE and
%recoveries. The results obtained by the application of

the different chemometrics approaches showed that

RBF-ANN was the preferred method on the basis of

%RPE and %recoveries. PCR, PLS, DPCR and DPLS

also gave satisfactory results, while CLS and DCLS per-

formed poorly. Derivative spectral matrices did not im-

prove the prediction errors (%RPET). Experimental data

of real samples was processed by PLS and RBF-ANN
with satisfactory results, which were supported by the

recoveries of standard additions.
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